Регуляторные системы организма человека. Регуляторные системы организма

Наблюдая за работой своего организма, вы замечали, что после бега повышается частота дыхания и сердечных сокращений. После приема пищи увеличивается количество глюкозы в крови. Однако через некоторое время эти показатели якобы сами по себе приобретают исходных значений. Каким образом происходит такая регуляция?

Гуморальная регуляция

Гуморальная регуляция (лат. юмор — жидкость) осуществляется с помощью веществ, которые влияют на процессы метаболизма в клетках, так и на работу органов и организма в целом. Эти вещества попадают в кровь, а из нее — в клетки. Так, повышение уровня углекислого газа в крови увеличивает частоту дыхания.

Некоторые вещества, например гормоны, выполняют свою функцию, даже если их концентрация в крови очень мала. Большинство гормонов синтезируются и выделяются в кровь клетками желез внутренней секреции, которые образуют эндокринную систему. Путешествуя с кровью по всему организму, гормоны могут попасть в любого органа. Но влияет гормон на работу органа только в случае, если клетки этого органа имеют рецепторы именно к этому гормону. Рецепторы сочетаются с гормонами, и это влечет за собой изменение активности клетки. Так, гормон инсулин, присоединяясь к рецепторам клетки печени, стимулирует проникновение в нее глюкозы и синтез гликогена из этого соединения.

Для подготовки к урокам советует похожие конспекты и рефераты :

Эндокринная система

Эндокринная система обеспечивает рост и развитие организма, отдельных его частей и органов. Она участвует в регуляции метаболизма и приспосабливает его к потребностям организма, постоянно меняются.

Нервная регуляция

В отличие от системы гуморальной регуляции, которая соответствует преимущественно на изменения во внутренней среде, нервная система реагирует на события, происходящие как внутри организма, так и за его пределами. С помощью нервной системы организм отвечает на любые воздействия очень быстро. Такие реакции на действие раздражителей называют рефлексами. Осуществляется рефлекс благодаря работе цепи нейронов, образующих рефлекторную дугу. Каждая такая дуга начинается с чувствительного или рецепторного, нейрона (нейрона-рецептора). Он воспринимает действие раздражителя и создает электрический импульс, который называют нервным

Импульсы, возникающие в нейроне-рецепторе, поступают к нервным центрам спинного и головного мозга, где обрабатывается информация. Здесь принимается решение, к которому органа следует отправить нервный импульс, чтобы ответить на действие раздражителя. После этого команды направляются по нейронам-эффекторов к органу, который отвечает на раздражитель. Обычно такой ответ — это сокращение определенной мышцы или выделение секрета железы. Чтобы представить себе скорость передачи сигнала по рефлекторной дуге, вспомните, за какое время вы отдергиваете руку от горячего предмета.

Нервные импульсы

Нервные импульсы передаются с помощью особых веществ — медиаторов. Нейрон, в котором возник импульс, выделяет их в щель синапса — место соединения нейронов. Медиаторы присоединяются к белкам-рецепторов нейрона-мишени, а он в ответ генерирует электрический импульс и передает его к следующему нейрону или другой клетки.

Иммунная регуляция обеспечивает иммунная система, задача которой состоит в создании иммунитета — способности организма противостоять действию внешних и внутренних врагов. Ими являются бактерии, вирусы, различные вещества, которые нарушают нормальную жизнедеятельность организма, а также его клетки, отмершие или переродились. Главные боевые силы системы иммунной регуляции — определенные клетки крови и специальные вещества, содержащиеся в ней.

Описание презентации ЛЕКЦИЯ № 14 Регуляторные системы организма. Биохимия по слайдам

ПЛАН ЛЕКЦИИ 1. Регуляторные системы организма. Уровни и принципы организации. 2. Гормоны. Определение понятия. Особенности действия. 3. Классификация гормонов: по месту синтеза и химической природе, свойствам. 4. Основные представители гормонов 5. Этапы метаболизма гормонов.

Основные свойства живых организмов 1. Единство химического состава. 2. Обмен веществ и энергии 3. Живые системы – открытые системы: используют внешние источники энергии в виде пищи, света и т. п. 4. Раздражимость - способность живых систем реагировать на внешние или внутренние воздействия (изменения). 5. Возбудимость - способность живых систем отвечать на действие раздражителя. 6. Движение, способность к перемещению. 7. Размножение, обеспечивающее непрерывность жизни в ряду поколений 8. Наследственность 9. Изменчивость 10. Живые системы – самоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы

Живые организмы способны поддерживать постоянство внутренней среды — гомеостаз. Нарушение гомеостаза приводит к болезни или смерти. Показатели гомеостаза млекопитающих Регуляция р. Н Регуляция водно-солевого обмена. Регуляция концентрации веществ в организме Регуляция обмена веществ Регуляция скорости энергетического обмена Регуляция температуры тела.

Гомеостаз в организме поддерживается за счет регуляции скорости ферментативных реакций, за счет изменения: I). Доступности молекул субстрата и кофермента; II). Каталитической активности молекул фермента; III). Количества молекул фермента. S PE * S Кофермент Витамин P Клетка

В многоклеточных организмах в поддержании гомеостаза участвуют 3 системы: 1). Нервная 2). Гуморальная 3). Иммунная Регуляторные системы функционируют с участием сигнальных молекул. Сигнальные молекулы – это органические вещества, которые переносят информацию. Для передачи сигнала: А). ЦНС использует нейромедиаторы (регулирует физиологические функции и работу эндокринной системы) Б). Гуморальная система использует гормоны (регулирует метаболические и физиологические процессы, пролиферацию, дифференцировку клеток и тканей) В). Иммунная система использует цитокины (защищает организм от внешних и внутренних патогенных факторов, регулирует иммунные и воспалительные реакции, пролиферацию, дифференцировку клеток, работу эндокринной системы)

í å ø í è å è â í ó ò ð å í í è å ô à ê ò î ð û Ö Í Ñ Ã è ï î ò à ë à ì ó ñ Ã è ï î ô è ç Ý í ä î ê ð è í í û å æ å ë å ç û Ò ê à í è ì è ø å í èí å é ð î ì å ä è à ò î ð û ð å ë è ç è í ã ã î ð ì î í û ë è á å ð è í û ñ ò à ò è í û ò ð î ï í û å ã î ð ì î í û S PEI. I I I. Первый уровень - ЦНС. Нервные клетки получают сигналы из внешней и внутренней среды, преобразуют их в форму нервного импульса и передают через синапсы, используя нейромедиаторы, которые вызывают изменения метаболизма в эффекторных клетках. Второй уровень - эндокринная система. Включает гипоталамус, гипофиз, периферические эндокринные железы, а также отдельные клетки (АПУД система), синтезирующие под влиянием соответствующего стимула гормоны, которые через кровь действуют на ткани-мишени. Третий уровень - внутриклеточный. На метаболические процессы в клетке влияют субстраты и продукты обмена веществ, а также тканевые гормоны (аутокринно). Системы регуляции образуют 3 иерархических уровня

Принципы организации нейроэндокринной системы В основе работы нейроэндокринной системы лежит принцип прямой, обратной, положительной и отрицательной связи. 1. Принцип прямой положительной связи – активация текущего звена системы приводит к активации следующего звена системы, распространению сигнала в сторону клеток-мишеней и возникновению метаболических или физиологических изменений. 2. Принцип прямой отрицательной связи – активация текущего звена системы приводит к подавлению следующего звена системы и прекращению распространения сигнала в сторону клеток-мишеней. 3. Принцип обратной отрицательной связи – активация текущего звена системы вызывает подавление предыдущего звена системы и прекращение его стимулирующего влияния на текущую систему. Принципы прямой положительной и обратной отрицательной связи являются основой для поддержания гомеостаза.

Ãîíàäîòðîïèí- ðåëèçèíã ãîðìîí ÃÈÏÎÒÀËÀÌÓÑÃÈÏÎÔÈÇ ÔÑÃ ÔÎËËÈÊÓË Ýñòðàäèîë 4. Принцип обратной положительной связи – активация текущего звена системы вызывает стимуляцию предыдущего звена системы. Основа циклических процессов.

Гормоны – органические сигнальные молекулы беспроводного системного действия. 1. Синтезируются в эндокринных железах, 2. транспортируются кровью 3. действуют на ткани мишени (гормоны щитовидной железы, надпочечников, поджелудочной железы и т. д). Всего известно более 100 гормонов. Термин гормон (hormao — возбуждаю, пробуждаю) введено в 1905 г. Бейлисом и Старлингом для выражения активности секретина. Гормоны

Ткань мишень – ткань, в которой гормон вызывает специфическую биохимическую или физиологическую реакцию. Клетки тканей мишеней для взаимодействия с гормоном синтезируют специальные рецепторы, количество и тип которых определяет интенсивность и характер ответа. В организме около 200 типов дифференцированных клеток, лишь некоторые из них продуцируют гормоны, но все являются мишенями для действия гормонов.

Особенности действия гормонов: 1. Действуют в малых количествах (10 -6 -10 -12 ммоль/л); 2. Существует абсолютная или высокая специфичность в действии гормонов. 3. Переносят только информацию. Не используются в энергетических и строительных целях; 4. Действуют опосредованно через каскадные системы, (аденилатциклазную, инозитолтрифосфатную и др. системы) взаимодействуя с рецепторами; 5. Регулируют активность, количество белков (ферментов), транспорт веществ через мембрану; 6. Зависят от ЦНС; 7. Беспороговый принцип. Даже 1 молекула гормона способна оказать эффект; 8. Конечный эффект — результат действия множества гормонов.

Гормоны регулируют количество и каталитическую активность ферментов не напрямую, а опосредовано через каскадные системы Каскадные системы: 1. Многократно усиливают сигнал гормона (повышают количество или каталитическую активность фермента) так что 1 молекула гормона способна вызвать изменение метаболизма в клетке 2. Обеспечивают проникновение сигнала в клетку (водорастворимые гормоны в клетку самостоятельно не проникают) Гормоны Ферменты. Каскадные системы х

каскадные системы состоят из: 1. рецепторов; 2. регуляторных белков (G-белки, IRS, Shc, STAT и т. д.). 3. вторичных посредников (messenger — посыльный) (Са 2+, ц. АМФ, ц. ГМФ, ДАГ, ИТФ); 4. ферментов (аденилатциклаза, фосфолипаза С, фосфодиэстераза, протеинкиназы А, С, G, фосфопротеинфосфотаза); Виды каскадных систем: 1. аденилатциклазная, 2. гуанилатциклазная, 3. инозитолтрифосфатная, 4. RAS и т. д.),

Гормоны оказывают как системное, так и местное действие: 1. Эндокринное (системное) действие гормонов (эндокринный эффект) реализуется, когда они транспортируются кровью и действуют на органы и ткани всего организма. Характерно для истинных гормонов. 2. Местное действие гормонов реализуется, когда они действуют на клетки, в которых были синтезированы (аутокринный эффект) , или на соседние клетки (паракринный эффект). Характерно для истинных и тканевых гормонов.

Классификация гормонов А. По химическому строению: 1. Пептидные гормоны Рилизинг-гормоны гипоталамуса Гормоны гипофиза Паратгормон Инсулин Глюкагон Кальцитонин 2. Стероидные гормоны Половые гормоны Кортикоиды кальцитриол 3. Производные аминокислот (тирозин) Тиреоидные гормоны Катехоламины 4. Эйкозаноиды — производные арахидоновой кислоты (гормоноподобные вещества) Лейкотриены, Тромбоксаны, Простагландины, Простациклины

Б. По месту синтеза: 1. Гормоны гипоталамуса 2. Гормоны гипофиза 3. Гормоны поджелудочной железы 4. Гормоны паращитовидной железы 5. Гормоны щитовидной железы 6. Гормоны надпочечников 7. Гормоны гонад 8. Гормоны ЖКТ 9. и т. д

В. По биологическим функциям: Регулируемые процессы Гормоны Обмен углеводов, липидов, аминокислот Инсулин, глюкагон, адреналин, кортизол, тироксин, соматотропин Водно-солевой обмен Альдостерон, антидиуретический гормон Обмен кальция и фосфатов Паратгормон, кальцитонин, кальцитриол Репродуктивная функция Эстрадиол, тестостерон, прогестерон, гонадотропные гормоны Синтез и секреция гормонов эндокринных желёз Тропные гормоны гипофиза, либерины и статины гипоталамуса Изменение метаболизма в клетках, синтезирующих гормон Эйкозаноиды, гистамин, секретин, гастрин, соматостатин, вазоактивный интестинальный пептид (ВИП), цитокины

Релизинг гормоны — поддерживают базальный уровень и физиологические пики продукции тропных гормонов гипофиза и нормальное функционирование периферических желёз внутренней секреции Релизинг-факторы (гормоны) Либерины Активация секреции тропных гормонов Статины Ингибирование секреции тропных гормонов. Гормоны Гипоталамуса

Тиреотропин релизинг гормон (ТРГ) Трипептид: ПИРО-ГЛУ-ГИС-ПРО-NH 2 C O CO NH CO N O C NH 2 CH 2 N H Стимулирует секрецию: Тиреотропного гормона (ТТГ) Пролактина Соматотропина

Гонадотропин релизинг гормон (ГРГ) Декапептид: ПИРО-ГЛУ-ГИС-ТРП-СЕР-ТИР-ГЛИ-ЛЕЙ-АРГ-ПРО-ГЛИ-NH 2 Стимулирует секрецию: Фоликулостимулирующего гормона Лютеинезирующего гормона Кортикотропин релизинг гормон (КРГ) Пептид 41 амино-кислотный остаток. Стимулирует секрецию: вазопрессина окситоцина катехоламинов ангиотензина-

Соматостанин релизинг гормон (СРГ) Пептид 44 аминокислотных остатка ингибирует секрецию соматотропина Соматотропин ингибирующий гормон (СИГ) Тетрадекопептид (14 аминокислотных остатка) АЛА-ГЛИ-ЦИС-ЛИЗ-АСН-ФЕН-ТРП-ЛИЗ-ТРЕ-ФЕН-ТРЕ-СЕР-ЦИС-NH 2 S S Ингибируют секрецию: гормона роста, инсулина, глюкагона. Меланотропин релизинг гормон Меланотропин ингибирующий гормон Регулируют секрецию меланостимулирующего гормона

Гормоны гипофиза Передняя доля гипофиза 1 Соматомаммотропины: — гормон роста — пролактин — хорионический соматотропин 2 Пептиды: — АКТГ — -липотропин — энкефалины — эндорфины — меланостимулирующий гормон 3 Гликопротеиновые гормоны: — тиреотропин — лютеинезирующий гормон — фоликулостимулирующий гормон — хорионический гонадотропин. ПОМК

Задняя доля гипофиза Вазопрессин Н-ЦИС-ТИР-ФЕН-ГЛН-АСН-ЦИС-ПРО-АРГ-ГЛИ-CO-NH 2 S S Синтезируется супраоптическим ядром гипоталамуса Концентрация в крови 0 -12 пг/мл Выброс регулируется кровопотерей Функции: 1) стимулирует реабсорбцию воды 2) стимулирует глюконеогенез, гликогенолиз 3) сужает сосуды 4) является компонентом стрессорной реакции

Окситоцин Н-ЦИС-ТИР-ИЛЕ-ГЛН-АСН-ЦИС-ПРО-ЛЕЙ-ГЛИ-СО-NH 2 S S Синтезируется паравентрикулярным ядром гипоталамуса Функции: 1) стимулирует секрецию молока молочными железами 2) стимулирует сокращения матки 3) релизинг фактор для выброса пролактина

Основные стероидные гормоны С OCH 3 O С OCH 2 OH O HOOH HC OПрогестерон Кортикостерон Кортизол Альдостерон. Гормоны периферических желез

Гастроинтестинальные (кишечные) гормоны 1. Семейство гастрин-холецистокинин -гастрин -холецистокинин 2. Семейство секретин-глюкагона -секретин -глюкагон -желудочно-ингибирующий пектид -вазоактивный интестинальный пептид -пептид гистидин-изолейцин 3. Семейство РР -панкреотический полипептид -пептид YY -нейропептид Y 4. Другие пептиды -соматостатин -нейротензин -мотилин -вещество Р -панкреостатин

Этапы метаболизма гормонов Пути обмена гормонов зависят от их природы 1. Синтез 2. Активация 3. Хранение 4. Секреция 5. Транспорт 6. Действие 7. Инактивация

Синтез, активация, хранение и секреция пептидных гормонов ДНК Экзон. Интрон Пре м-РНК транскрипция препрогормонм-РНК процессинг трансляция Цитоплазматическая мембрана прогормон Активный гормон. Сигнальный пептид Секреторные пузырьки Протеолиз, гликозилирование Ядро Рибосомы ШЭР Комплекс Гольджи АТФСигнальные молекулы

Транспорт пептидных гормонов осуществляется в свободном виде (водорастворимы) и в комплексе с белками. Механизм действия. Пептидные гормоны взаимодействуют с мембранными рецепторами и через систему внутриклеточных посредников регулируют активность ферментов, что влияет на интенсивность метаболизма в тканях мишенях. В меньшей степени пептидные гормоны регулируют биосинтез белка. Механизм действия гормонов (рецепторы, посредники) рассмотрен в разделе ферменты. Инактивация. Гормоны инактивируются гидролизом до АК в тканях мишенях, печени, почках и т. д. Время полураспада инсулина, глюкагона Т½ = 3 -5 мин, у СТГ Т½= 50 мин.

Механизм действия белковых гормонов (аденилатциклазная система)Ц П М Белковый гормон G-белок R АТФ ц. АМФ Протеинкиназа (акт) Е (неакт) Е (акт) Фосфорилирование. АЦ Субстрат Продукт

1. Синтез гормонов происходит из холестерина в гладком ЭПР и митохондриях коры надпочечников, гонадах, коже, печени, почках. Превращение стероидов состоит в отщеплении алифатической боковой цепи, гидроксилировании, дегидрировании, изомеризации, либо в ароматизации кольца. 2. Активация. Стероидные гормоны часто образуются уже в активном виде. 3. Хранение. Синтезированные гормоны накапливаются в цитоплазме в комплексе со специальными белками. 4. Секреция стероидных гормонов происходит пассивно. Гормоны переходят с цитоплазматических белков в клеточную мембрану, откуда их забирают транспортные белки крови. 5. Транспорт. Стероидные гормоны, т. к. они водонерастворимы, переносятся в крови преимущественно в комплексе с транспортными белками (альбумины).

Синтез кортикоидных гормонов 17ά оксипрегненолон. Х олестерин П регненолон Прогестерон 11β оксипрегненолон 21 оксипрегненолон 18 оксипрегненолон 17ά оксипрогестерон 21 дезоксикортизол 17ά , 21 диоксипрегненолон 11 дезоксикортизол кортизон 18 оксидезоксикорти костерон 18 оксикортикостерон альдостерон 11β, 21 диоксипрегненолон 11β оксипрогестерон дезоксикортикос терон кортикостерон

Механизм действия стероидных гормонов. Ц П М G RЦиторецептор RG Активированный гормон – рецепторный комплекс R G ДНК И — РНК Синтез белка. Ионы Глюкоза АК

Инактивация. Стероидные гормоны инактивируются так же как и ксенобиотики реакциями гидроксилирования и конъюгации в печени и тканях мишенях. Инактивированные производные выводятся из организма с мочой и желчью. Период полураспада в крови обычно больше пептидных гормонов. У кортизола Т½ = 1, 5 -2 часа.

МЕТАБОЛИЗМ КАТЕХОЛАМИНОВ Симпато-адреналовая ось. OH CH 2 Òèð HC COOH NH 2 Î2 Í2Î OH CH 2 ÄÎÔÀ HC COOH NH 2 OH OH CH 2 äîôàìèí H 2 CNH 2 OH ÑÎ2 OH HC íîðàäðåíàëèí H 2 CNH 2 OH ÎÍ ÄÎÔÀ- äåêàðáîêñèëàçà Òèðîçèí- ìîíîîêñèãåíàçà äîôàìèí- ìîíîîêñèãåíàçà OH HC àäðåíàëèí H 2 C N+(CH 3)3 OH ÎÍ 3 SAM 3 SAÃ ìåòèë- òðàíñôåðàçà Fe 2+B 6âèò. Ñ Cu 2+ íîðàäðåíàëèí Î2 Í2Î 1. Синтез катехоламинов происходит в цитоплазме и гранулах клеток мозгового слоя надпочечников. Катехоламины сразу образуются в активной форме. Норадреналин образуется в основном в органах, иннервируемых симпатическими нервами (80% от общего количества). Н-СН

2. Хранение катехоламинов происходит в секреторных гранулах. Катехоламины поступают в гранулы путём АТФ-зависимого транспорта и хранятся в них в комплексе с АТФ в соотношении 4: 1 (гормон-АТФ). 3. Секреция гормонов из гранул происходит путём экзоцитоза. В отличие от симпатических нервов, клетки мозгового слоя надпочечников лишены механизма обратного захвата выделившихся катехоламинов. 4. Транспорт. В плазме крови катехоламины образуют непрочный комплекс с альбумином. Адреналин транспортируется в основном к печени и скелетным мышцам. Норадреналин лишь в незначительных количествах достигает периферических тканей. 5. Действие гормонов. Катехоламины регулируют активность ферментов, они действуют через цитоплазматические рецепторы. Адреналин через α-адренергические и β-адренергические рецепторы, норадреналин – через α-адренергические рецепторы. Через β-рецепторы активируется аденилатциклазная система, через α 2 -рецепторы ингибируется. Через α 1 -рецепторы активируется инозитолтрифосфатная система. Эффекты катехоламинов многочисленны и затрагивают практически все виды обмена. 7. Инактивация. Основная часть катехоламинов быстро метаболизируется в различных тканях при участии специфических ферментов.

МЕТАБОЛИЗМ ТИРЕОИДНЫХ ГОРМОНОВ Гипоталамо-гипофизарно-тиреоидная ось Синтез тиреоидных гормонов (йодтиронины: 3, 5, 3′-трийодтиронин (трийодтиронин, Т 3) и 3, 5, 3′, 5′-тетрайодтиронин (Т 4, тироксин)) происходит в клетках и коллоиде щитовидной железе. 1. В тиреоцитах (в фолликулах) синтезируется белок тиреоглобулин. (+ ТТГ) Это гликопротеин с массой 660 к. Д, содержащий 115 остатков тирозина, 8 -10% его массы приходиться на углеводы. Сначала на рибосомах ЭПР синтезируется претиреоглобулин, который в ЭПР формирует вторичную и третичную структуру, гликозилируется и превращается в тиреоглобулин. Из ЭПР тиреоглобулин поступает в аппарат Гольджи, где включается в секреторные гранулы и секретируется во внеклеточный коллоид.

2. Транспорт йода в коллоид щитовидной железы. Йод в виде органических и неорганических соединений поступает в ЖКТ с пищей и питьевой водой. Суточная потребность в йоде 150 -200 мкг. 25- 30% этого количества йодидов захватывается щитовидной железой. I — поступает в клетки щитовидной железы активным транспортом при участии йодид-переносящего белка симпортом с Nа+. Далее I — пассивно по градиенту поступает в коллоид. 3. Окисление йода и йодирование тирозина. В коллоиде при участии гемсодержащей тиреопероксидазы и Н 2 О 2 I — окисляется в I + , который йодирует остатки тирозина в тиреоглобулине с образованием монойодтирозинов (МИТ) и дийодтирозинов (ДИТ). 4. Конденсация МИТ и ДИТ. Две молекулы ДИТ конденсируются с образованием йодтиронина Т 4, а МИТ и ДИТ - с образованием йодтиронина Т 3.

2. Хранение. В составе йодтиреоглобулина тиреоидные гормоны накапливаются и хранятся в коллоиде. 3. Секреция. Йодтиреоглобулин фагоцитируется из коллоида в фолликулярную клетку и гидролизуется в лизосомах с освобождением Т 3 и Т 4 и тирозина и других АК. Аналогично стероидным гормонам, водонерастворимые тиреоидные гормоны в цитоплазме связываются со специальные белками, которые переносят их в состав клеточной мембраны. В норме щитовидная железа секретирует 80- 100 мкг Т 4 и 5 мкг Т 3 в сутки. 4. Транспорт. Основная часть тиреидных гормонов транспортируется в крови в связанной с белками форме. Основным транспортным белком йодтиронинов, а также формой их депонирования служит тироксинсвязывающий глобулин (ТСГ). Он обладает высоким сродством к Т 3 и Т 4 и в нормальных условиях связывает почти всё количество этих гормонов. Только 0, 03% Т 4 и 0, 3% Т 3 находятся в крови в свободной форме.

БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ 1. На основной обмен. являются разобщителями биологического окисления — тормозят образование АТФ. Уровень АТФ в клетках снижается и организм отвечает повышением потребления О 2, усиливается основной обмен. _ 2. На углеводный обмен: — повышает всасывание глюкозы в ЖКТ. — стимулирует гликолиз, пентозофосфатный путь окисления. — усиливает распад гликогена — повышает активность глюкозы-6 -фосфатазы и др. ферментов 3. На обмен белка: — индуцируют синтез (как и стероиды) — обеспечивают положительный азотистый баланс — стимулируют транспорт аминокислот 4. На липидный обмен: — стимулируют липолиз — усиливают окисление жирных кислот — тормозят биосинтез холестерина. Трийодтиронин и тироксин связываются с ядерным рецептором клеток-мишений

Инактивация йодтиронинов осуществляется в периферических тканях в результате дейодирования Т 4 до «реверсивной» Т 3 по 5, полного дейодирования, дезаминирования или декарбоксилирования. Йодированные продукты катаболизма йодтиронинов конъюгируют в печени с глюкуроновой или серной кислотами, секретируются с жёлчью, в кишечнике вновь всасываются, дейодируются в почках и выделяются с мочой. Для Т 4 Т½ =7 дней, для Т 3 Т½ =1 -1, 5 дня.

План лекции 1. Стресс – как общий адаптационный синдром 2. Стадии стресс-реакций: характеристика метаболических и биохимических изменений. 3. Роль гипофизарно-надпочечниковой системы, катехоламинов, СТГ, инсулина, гормонов щитовидной железы, половых гормонов в реализации адаптивных процессов в организме.

Адаптация (от лат. аdaptatio)- приспособление организма к условиям существования. Цель адаптации — устранение или ослабление вредного действия факторов окружающей cреды: 1. биологических, 2. физических, 3. химических, 4. социальных.

Адаптация СПЕЦИФИЧЕСКАЯ НЕСПЕЦИФИЧЕСКАЯ Вызывает изменения в организме, направленные на ослабление или устранение действия конкретного неблагоприятного фактора. Обеспечивает активизацию защитных систем организма, для адаптации к любому фактору среды.

3 вида адаптационных реакций 1. реакция на слабые воздействия – реакция тренировки (по Гаркави, Квакиной, Уколовой) 2. реакция на воздействия средней силы – реакция активации (по Гаркави, Квакиной, Уколовой) 3. реакция на сильные, чрезвычайные воздействия – стресс-реакция (по Г. Селье)

Впервые представление о стрессе (от англ. stress — напряжение) сформулировал канадский ученый Ганс Селье в 1936 г (1907 -1982 г. г.). Стресс — особое состояние организма человека и млекопитающих, возникающее в ответ на сильный внешний раздражитель -стрессор Вначале для обозначения стресса использовался термин общий адаптационный синдром (ОАС). Термин «стресс» стали использовать позднее.

Стрессор (синонимы: стресс-фактор, стресс-ситуация) - фактор, вызывающий состояние стресса. 1. Физиологический (чрезмерная боль, сильный шум, воздействие экстремальных температур) 2. Химический (прием ряда лекарственных препаратов, например, кофеина или амфетаминов) 3. Психологический (информационная перегрузка, соревнование, угроза социальному статусу, самооценке, ближайшему окружению и др.) 4. Биологический (инфекции)

1. разрастание коры надпочечников; 2. уменьшение вилочковой железы (тимус); 3. изъязвление желудка. Классическая триада ОАС:

Механизмы, повышающие адаптационные возможности организма к стрессору при ОАС: Мобилизации энергетических ресурсов (Повышение уровня глюкозы, жирных кислот, аминокислот и кетоновых тел) Увеличение эффективности внешнего дыхания. Усиление и централизация кровоснабжения. Увеличение свертывающей способности крови Активация работы ЦНС (улучшение внимания, памяти, сокращение времени реакции и т. д.). Снижение чувства боли. Подавление воспалительных реакций. Снижение пищевого поведения и полового влечения.

Негативные проявления ОАС: Подавление иммунитета (кортизол). Нарушение репродуктивной функции. Нарушение пищеварения (кортизол). Активация ПОЛ (адреналин). Деградация тканей (кортизол, адреналин). Кетоацидоз, гиперлипидемия, гиперхолестеринемия.

Стадии изменения адаптационных возможностей организма при стрессе Уровень резистентности стрессор 1 2 3 1 – фаза тревоги А – шока Б — противошока 2 – фаза резистентности 3 – фаза истощения или адаптации А Б Болезни адаптации, смерть Время

эустресс, при котором адаптационные возможности организма повышаются, происходит его адаптация к стрессовому фактору и ликвидация самого стресса. (адаптация) дистресс (истощение) стресс, при котором адаптационные возможности организма снижаются. Дистресс приводит к развитию болезней адаптации, возможно к гибели. Стресс, в зависимости от изменения уровня адаптационных возможностей делится:

Общий адаптационный синдром Развивается с участием систем: гипоталамо-гипофизарно-надпочечниковой. симпато-адреналовой гипоталамо-гипофизарно-тиреоидная ось и гормонов: АКТГ кортикостероидов (глюкокортикоиды, минералокортикоиды, андрогены, эстрогены) Катехоламинов (адреналин, норадреналин) ТТГ и тиреоидных гормонов СТГ

Регуляция секреции гормонов при стрессе Стресс ЦНС Гипоталамус Мозговое вещество надпочечников Адреналин Норадреналин Гипофиз АКТГ ТТГ СТГ Корковое вещество надпочечников Щитовидная железа Глюко- кортикоиды Вазопрессин Минерало- кортикоиды Тиреоидные гормоны Сомато- медины. СНС: параганглии Печень Ткани мишени

Участие гормонов в стадиях ОАС I II III время Уровень резистен- тности дистрессэустресс I стадия – тревоги шок противошок II стадия – резистентности Гормоны: кортизол, СТГ. III стадия – адаптации или истощения При адаптации: — анаболические гормоны: (CТГ, инсулин, половые гормоны). При истощении: -снижение гормонов адаптации. Накопление повреждений. Гормоны: адреналин, вазопрессин, окситоцин, кортиколиберин, кортизол.

O H C H 2 Ò è ðH C C O O HN H 2Î 2 O H C H 2 Ä Î Ô ÀH C C O O HN H 2 O H C H 2 ä î ô à ì è íH 2 C N H 2 O HÑ Î 2 O H H C í î ð à ä ð å í à ë è íH 2 C N H 2 O HÎ 2 Î Í Ä Î Ô À — ä å ê à ð á î ê ñ è ë à ç àÒ è ð î ç è í — ì î í î î ê ñ è ã å í à ç à ä î ô à ì è í — ì î í î î ê ñ è ã å í à ç à O H H C à ä ð å í à ë è íH 2 C N Í C H 3 O H Î ÍS A M S A Ã ì å ò è ë — ò ð à í ñ ô å ð à ç àF e 2 + B 6 â è ò. Ñ C u 2 +í î ð à ä ð å í à ë è í Синтез адреналина

Эффекты Норадреналин Артериальное давление + + + Частота сердечных сокращений + + + Периферическое сопротивление + + + Теплопродукция + + + + Сокращение ГМК + + или — Липолиз (Мобилизация жирных кислот) + + + Синтез кетоновых тел + + Гликогенолиз + + Гликогенез — — Моторика желудка и кишечника — — Потовые железы (Выделение пота) + +

Гипоталамо-гипофизарно-на дпочечниковая ось Глюкокортикоиды (кортизол) + стресс, травма, гипогликемия Минералокортикоиды (альдостерон) + гиперкалиемия, гипонатриемия, ангиотензин II, простагландины, АКТГ Андрогены Эстрогены Кортикостероиды. Гормоны коры надпочечников

кортикотропные клетки передней доли гипофиза Проопиомеланокортин (ПОМК) 241 АК Кортикотропин релизиг гормон дофамин меланотропные клетки средней доли гипофиза

Максимальная секреция АКТГ (а также либерина и глюкокортикоидов) наблюдается утром в 6 -8 часов, а минимальная - между 18 и 23 часами АКТГ MC 2 R (рецептор) кора надпочечников жировая ткань меланокортиновые рецепторы клеток кожи, меланоцитов, клеток иммунной системы и др глюкокортикоиды липолиз Повышение пигментации

Реакции синтеза кортикостероидов H O 1 H O Ñ OC H 3 2 3 4 5 6 789 1 0 1 1 1 2 1 3 1 4 1 5 1 61 71 8 1 9 2 02 1 2 2 2 3 2 4 2 5 2 6 2 7 ÕîëåñòåðèíÏðåãíåíîëîí Ýôèð õîëåñòåðèíà Æèðíàÿ êèñëîòàÍ2Î ëèïèäíàÿ êàïëÿ õîëåñòåðîë- ýñòåðàçà ìèòîõîíäðèÿ õîëåñòåðîë- äåñìîëàçà Ð 4 5 0ÀÊÒÃ

Синтез кортизола и альдостерона. HO ÑO CH 3 Ï ð å ã í å í î ë î í O ÑO CH 3 Ï ð î ã å ñ ò å ð î í O ÑO CH 3 à è ä ð î ê ñ è ï ð î ã å ñ ò å ð î í ÎÍ O ÑO CH 3 OH Ä å ç î ê ñ è ê î ð ò è ç î ë ÎÍ O ÑO CH 3 OH Ê î ð ò è ç î ë ÎÍHO 1 2 3 ã è ä ð î ê ñ è ñ ò å ð î è ä — Ä Ã ö è ò î ï ë à ç ì à 1 7 — ã è ä ð î ê ñ è ë à ç àÝ Ï Ð 2 1 — ã è ä ð î ê ñ è ë à ç à (Ð 4 5 0)Ý Ï Ð 1 1 — ã è ä ð î ê ñ è ë à ç à (Ð 4 5 0) 4 ì è ò î õ î í ä ð è ÿ O ÑO CH 3 OH Ä å ç î ê ñ è ê î ð ò è ê î ñ ò å ð î í O ÑO CH 3 OH Ê î ð ò è ê î ñ ò å ð î í HO CHO O ÑO CH 3 OH À ë ü ä î ñ ò å ð î í HO 2 1 — ã è ä ð î ê ñ è ë à ç àÝ Ï Ð Ï ó ÷ ê î â à ÿ è ñ å ò ÷ à ò à ÿ ç î í à ê ë ó á î ÷ ê î â à ÿ ç î í à 1 1 — ã è ä ð î ê ñ è ë à ç à 1 8 — ã è ä ð î ê ñ è ë à ç à ì è ò î õ î í ä ð è ÿ

Действие глюкокортикоидов (кортизол) в печени в основном оказывают анаболический эффект (стимулирует синтез белков и нуклеиновых кислот). в мышцах, лимфоидной и жировой ткани, коже и костях тормозят синтез белков, РНК и ДНК и стимулирует распад РНК, белков, аминокислот. стимулируют глюконеогенез в печени. стимулируют синтез гликогена в печени. тормозят потребление глюкозы инсулинзависимыми тканями. Глюкоза идет в инсулиннезависимые ткани – ЦНС.

Действие минералокортикоидов (основной представитель альдостерон) Стимулируют: реабсорбцию Na + в почках; секрецию К + , NH 4 + , Н + в почках, потовых, слюнных железах, слиз. обол-ке кишечника. Ингибируют: синтез белков-транспортёров Na; Na + , K + -АТФ-азы; синтез белков-транспортёров К + ; синтез митохондрльных ферментов ЦТК.

Синтез андрогенов и их предшественников в коре надпочечников H O Ñ OC H 3Ïðåãíåíîëîí O Ñ OC H 3Ïðîãåñòåðîí H O Ñ OC H 3 Ãèäðîêñèïðåãíåíîëîí Î Í Òåñòîñòåðîí èçîìåðàçà ÝÏÐ ãèäðîêñèëàçà ìèòîõîíäðèÿ ãèäðîêñèëàçàÝÏÐ H O Î Í Äåãèäðîýïèàíäðîñòåðîí ÀíäðîñòåíäèîëH O Î Í O Ñ OC H 3 Ãèäðîêñèïðîãåñòåðîí Î Í Àíäðîñòåíäèîí O Î Ýñòðàäèîë H O Î Í ÍÀÄÏÎ×Å×ÍÈÊÀÕ ìàëîà ê ò è â í û é ï ð å ä ø å ñ ò â å í í è ê ì à ë î à ê ò è â í û é ï ð å ä ø å ñ ò â å í í è ê ìàëî

Регуляция синтеза и секреции мужских половых гормонов Гипоталамус ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА Клетки Сертоли Клетки Лейдига. ФСГ — — Гонадотропин-рилизинг гормон +ЛГ тестостерон сперматогенезингибин ++ + —

Регуляция синтеза и секреции женских половых гормонов Гипоталамус ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА Фолликул Жёлтое тело. ФСГ — Гонадотропин-рилизинг гормон ЛГ прогестерон ++ + эстрадиол -+

Действие половых гормонов Андрогены: -регулируют синтез белков у эмбриона в сперматогониях, мышцах, костях, почках и мозге; -оказывают анаболическое действие; -стимулируют клеточное деление и т. д. .

Эстрогены: -стимулируют развитие тканей, участвующих в размножении; -определяют развитие женских вторичных половых признаков; -подготавливают эндометрий к имплантации; -анаболическое действие на кости и хрящи; -стимулируют синтез транспортных белков тиреоидных и половых гормонов; -увеличивают синтез ЛПВП и тормозят образование ЛПНП, что ведёт к снижению ХС в крови и т. д. -влияет на репродуктивную функцию; -действует на ЦНС и т. д. .

Прогестерон: 1. влияет на репродуктивную функцию организма; 2. увеличивает базальную температуру тела после 3. овуляции и сохраняется во время лютеиновой фазы менструального цикла; 4. в высоких концентрациях взаимодействует с рецепторами альдостерона почечных канальцев (альдостерон теряет возможность стимулировать реабсорбцию натрия); 5. действует на ЦНС, вызывая некоторые особенности поведения в предменструальный период.

Соматотропный гормон СТГ – соматотропный гормон (гормон роста) , одноцепочечный полипептид из 191 АК, имеет 2 дисульфидных мостика. Синтезируется в передней доли гипофиза как классический белковый гормон. Секреция импульсная с интервалами в 20 -30 мин.

Гипоталамус ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА Печень + глюконеогенез + синтез белка Кости + рост + синтез белка Адипоциты + липолиз — утилизация глюкозы Мышцы + синтез белка — утилизация глюкозы. СТГсоматолиберин соматостатин + — -соматостатинсоматолиберин — + ИФР-

Под действием СТГ в тканях вырабатываются пептиды — соматомедины. Соматомедины или инсулиноподобные факторы роста (ИФР) обладают инсулиноподобной активностью и мощным ростстимулирующим действием. Соматомедины обладают эндокринным, паракринным и аутокринным действием. Они регулируют активность и количество ферментов, биосинтез белков.

Физиологические процессы в организме человека согласованно проте­кают благодаря существованию определенных механизмов их регуляции.

Регуляция различных процессов в организме осуществляется с помощью нервного и гуморального механизмов.

Гуморальная регуляция осуществляется с помощью гуморальных факторов (гормонов ), которые разносятся кровью и лимфой по всему организму.

Нервная регуляция осуществляется с помощью нервной системы.

Нервный и гуморальный способы регуляции функций тесно связаны между собой. На деятельность нервной системы постоянно оказывают влияние приносимые с током крови химические вещества, а образование большинства химических веществ и выделение их в кровь находится под постоянным контролем нервной системы.

Регуляция физиологических функций в организме не может осуществляться с помощью только нервной или только гуморальной регуляции - это единый комплекс нейрогуморалыюй регуляции функций.

В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная).

Нервная регуляция

Нервная регуляция - это координирующее влияние нервной системы на клетки, ткани и органы, один из основных механизмов саморегуляции функций целостного организма. Нервная регуляция осуществляется с помощью нервных импульсов. Нервная регуляция является быстрой и локальной, что особенно важно при регуляции движений, и затрагивает все(!) системы организма.

В основе нервной регуляции лежит рефлекторный принцип. Рефлекс является универсальной формой взаимодействия организма с окружающей средой, это ответная реакция организма на раздражение, которая осуществляется через центральную нервную систему и контролируется ею.

Структурно-функциональной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление ответа на раздражение. Все рефлексы осуществляются I благодаря деятельности центральной нервной системы - головного и спинного мозга.

Гуморальная регуляция

Гуморальная регуляция - это координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (гормонов), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

Гуморальная регуляция возникла в процессе эволюции раньше, чем нервная. Она усложнялась в процессе эволюции, в результате чего возникла эндокринная система (железы внутренней секреции).

Гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции функций организма, которая играет важную роль в поддержании относительного пос­тоянства состава и свойств внутренней среды организма (гомеостаза) и его приспособлении к меняющимся условиям существования.

Иммунная регуляция

Иммунитет - это физиологическая функция, которая обеспечивает устойчивость организма к действию чужеродных антигенов. Иммунитет человека делает его невосприимчивым ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных, обеспечивает защиту организма от раковых клеток. Задачей иммунной системы является распознавать и разрушать все чужеродные структуры.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител , которые, например, могут связывать избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную регуляцию.

Интенсивность иммунного ответа, в свою очередь, регулируется нейрофильным способом . Работа иммунной системы корректируется мозгом и через эндокринную систему. Такая нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов. Промедиаторы и нейропептиды достигают органов иммунной системы по аксонам нервов, а гормоны выделяются эндокринными железами не­родственно в кровь и таким образом доставляются к органам иммунной системы. Фагоцит (клетка иммунитета), уничтожает бактериальные клетки

Начало формы

Возрастная анатомия и физиология Антонова Ольга Александровна

Тема 4. РАЗВИТИЕ РЕГУЛЯТОРНЫХ СИСТЕМ ОРГАНИЗМА

4.1. Значение и функциональная деятельность элементов нервной системы

Координация физиологических и биохимических процессов в организме происходит посредством регуляторных систем: нервной и гуморальной. Гуморальная регуляция осуществляется через жидкие среды организма – кровь, лимфу, тканевую жидкость, нервная регуляция – посредством нервных импульсов.

Главное назначение нервной системы заключается в обеспечении функционирования организма как единого целого через взаимосвязь между отдельными органами и их системами. Нервная система осуществляет восприятие и анализ разнообразных сигналов из окружающей среды и от внутренних органов.

Нервный механизм регуляции функций организма более совершенен, нежели гуморальный. Это, во-первых, объясняется быстротой распространения возбуждения по нервной системе (до 100–120 м/с), а во-вторых, тем, что нервные импульсы приходят непосредственно к определенным органам. Однако следует иметь в виду, что вся полнота и тонкость приспособления организма к окружающей среде осуществляются при взаимодействии и нервных, и гуморальных механизмов регуляции.

Общий план строения нервной системы. В нервной системе по функциональному и структурному принципу выделяют периферическую и центральную нервную систему.

Центральная нервная система состоит из головного и спинного мозга. Головной мозг расположен внутри мозгового отдела черепа, а спинной мозг – в позвоночном канале. На разрезе головного и спинного мозга различают участки темного цвета (серое вещество), образованные телами нервных клеток (нейронов), и белого цвета (белое вещество), состоящие из скоплений нервных волокон, покрытых миелиновой оболочкой.

Периферическая часть нервной системы состоит из нервов, например пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней также относят любые скопления нервных клеток вне спинного и головного мозга, такие как нервные узлы, или ганглии.

Нейрон (от греч. neuron – нерв) – основная структурная и функциональная единица нервной системы. Нейрон – это сложно устроенная высокодифференцированная клетка нервной системы, функцией которой является восприятие раздражения, переработка раздражения и передача его к различным органам тела. Нейрон состоит из тела клетки, одного длинного маловетвящегося отростка – аксона и нескольких коротких ветвящихся отростков – дендритов.

Аксоны бывают различной длины: от нескольких сантиметров до 1–1,5 м. Конец аксона сильно ветвится, образуя контакты со многими клетками.

Дендриты – короткие сильноветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов.

В различных отделах нервной системы тело нейрона может иметь различную величину (диаметром от 4 до 130 мк) и форму (звездчатую, округлую, многоугольную). Тело нейрона покрыто мембраной и содержит, как и все клетки, цитоплазму, ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическую сеть.

Возбуждение по дендритам передается от рецепторов или других нейронов к телу клетки, а по аксону сигналы поступают к другим нейронам или рабочим органам. Установлено, что от 30 до 50 % нервных волокон передают информацию в центральную нервную систему от рецепторов. На дендритах имеются микроскопических размеров выросты, которые значительно увеличивают поверхность соприкосновения с другими нейронами.

Нервное волокно. За проведение нервных импульсов в организме отвечают нервные волокна. Нервные волокна бывают:

а) миелинизированные (мякотные); чувствительные и двигательные волокна этого типа входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру, а также участвуют в деятельности вегетативной нервной системы;

б) немиелинизированные (безмякотные), принадлежат в основном симпатической нервной системе.

Миелин выполняет изолирующую функцию и имеет слегка желтоватый цвет, поэтому мякотные волокна выглядят светлыми. Миелиновая оболочка в мякотных нервах через промежутки равной длины прерывается, оставляя открытыми участки осевого цилиндра – так называемые перехваты Ранвье.

Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друга только шванновскими клетками (миелоцитами).

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование систем внутренних органов ¦ СЕРДЕЧНОСОСУДИСТАЯ СИСТЕМАИсследование сердечнососудистой системы осуществляется путем выслушивания тонов сердца и пульса артерий и вен. Сердечная недостаточность, сопровождаемая внутрисердечными шумами, бывает обусловлена

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

Глава 6 ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ

Из книги Племенное разведение собак автора Сотская Мария Николаевна

Развитие систем органов плода собаки Обмен веществ между плодом и матерью происходит в плаценте. Питание плода осуществляется за счет поступления в его кровь питательных веществ из крови матери и за счет секрета эпителия слизистой оболочки. Некоторое количество

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

Тема 1. ЗАКОНОМЕРНОСТИ РОСТА И РАЗВИТИЯ ДЕТСКОГО

Из книги Кризис аграрной цивилизации и генетически модифицированные организмы автора Глазко Валерий Иванович

Тема 2. ВЛИЯНИЕ НАСЛЕДСТВЕННОСТИ И СРЕДЫ НА РАЗВИТИЕ ДЕТСКОГО ОРГАНИЗМА 2.1. Наследственность и ее роль в процессах роста и развития Наследственностью называется передача родительских признаков детям. Некоторые наследственные качества (форма носа, цвет волос, глаз,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Активизация защитных систем организма и устойчивость к абиотическим факторам Наряду с селекцией на устойчивость к болезням и вредителям, в странах Западной Европы и США ведется работа по повышению потенциальной урожайности видов растений, обладающих генетически

Из книги Основы психофизиологии автора Александров Юрий

Из книги Мозг, разум и поведение автора Блум Флойд Э

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

7. ВЗАИМОДЕЙСТВИЕ СЕНСОРНЫХ СИСТЕМ Взаимодействие сенсорных систем осуществляется на спинальном, ретикулярном, таламическом и корковом уровне. Особенно широка интеграция сигналов в ретикулярной формации. В коре мозга происходит интеграция сигналов высшего порядка. В

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

1. ОБЩИЕ СВОЙСТВА СЕНСОРНЫХ СИСТЕМ Сенсорной системой называют часть нервной системы, воспринимающую внешнюю для мозга информацию, передающую её в мозг и анализирующую её. Сенсорная система состоит из воспринимающих элементов – рецепторов, нервных путей, передающих

Из книги автора

1.1. Методы исследования сенсорных систем Функции сенсорных систем исследуют в электрофизиологических, нейрохимических и поведенческих опытах на животных, проводят психофизиологический анализ восприятия у здорового и больного человека, а также с помощью ряда

Из книги автора

2. ТЕОРИЯ ФУНКЦИОНАЛЬНЫХ СИСТЕМ 2.1. Что такое система? Термин «система» обычно применяется для того, чтобы указать на собранность, организованность группы элементов и отграниченность её от других групп и элементов. Давалось множество определений системы, которые

Из книги автора

7.1. Историческая детерминация уровневой организации систем Представления о закономерностях развития многими авторами разрабатываются в связи с идеями уровневой организации (см. в [Анохин, 1975, 1980; Роговин, 1977; Александров, 1989, 1995, 1997]). Процесс развития рассматривается как

Из книги автора

Общая модель сенсорной и двигательной систем На протяжении веков люди пользовались различными приспособлениями для связи друг с другом - от очень простых сигналов (сверкание отраженного солнечного света, передаваемого от одного наблюдательного поста к другому) до

Из книги автора

Глава 6 Особенности продуцирования биологических систем 6.1. Общие понятия, термины, определения В экологии принято количество живого вещества всех групп растительных и животных организмов называть биомассой. Она является результирующей величиной всех процессов

Из книги автора

8.5. Единство регуляторных систем организма Сигнальные молекулы традиционно делили на три группы, согласно «дальности» действия сигнала. Гормоны переносятся кровью по всему организму, медиаторы – в пределах синапса, гистогормоны – в пределах соседних клеток. Однако

Подразделяется на центральную и периферическую. В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную.

Головной мозг расположен в мозговом отделе черепа. Он состоит из пя­ти отделов, выполняющих различные функции: продолговатый, задний (варолиев мост и мозжечок), средний, промежуточный, передний мозг (большие по­лушария).

1. Продолговатый мозг отвечает за , дыхание, сердечную
деятельность, защитные рефлексы (рвота, кашель).

2. Задний мозг. Варолиев мост - проводящие пути между мозжечком и
полушариями. Мозжечок регулирует двигательные акты (равновесие, коорди­нация движений).

3. Средний мозг - поддерживает тонус мышц, отвечает за ориентировочные, сторожевые и оборонительные рефлексы на зрительные и звуковые раз­дражители.

4. Промежуточный мозг состоит из таламуса, эпи-и гипотоламуса. Свер­ху к нему прилегает эпифиз, а снизу - гипофиз. Он регулирует все сложные
двигательные рефлексы, координирует работу внутренних органов и участвует
в гуморальной регуляции обмена веществ, потребление воды и пищи, поддер­жании постоянной температуры тела.

5. Передний мозг осуществляет психическую деятельность: память, речь,
мышление, поведение. Состоит из серого и белого вещества. Серое вещество
образует кору и подкорковые структуры и представляет собой совокупность тел
нейронов и их коротких отростков (дендритов), белое вещество - длинных от­
ростков - дексонов.

Спинной мозг расположен в костном позвоночном канале. Он имеет вид белого шнура диаметром около одного сантиметра. В нем есть 31 сегмент, от которых отходит пара смешанных спинномозговых нервов. У него две функции - рефлекторная и проводниковая.


1. Рефлекторная функция - осуществление двигательных и вегетативных рефлексов (сосудодвигательный, пищевой, дыхательный, дефекации, мо­чеиспускания, половой).

2. Проводниковая функция - проведение нервных импульсов от голов­ного мозга к телу и наоборот.

Вегетативная нервная система управляет деятельностью внутренних органов, желез и не подчиняется воле человека. Она состоит из ядер - скопле­ние нейронов в головном и спинном мозге, вегетативных узлов - скопление нейронов вне ЦНС и из нервных окончаний. Вегетативная система делится на симпатическую и парасимпатическую.

Симпатическая система мобилизует силы организма в экстремальной ситуации. Ее ядра находятся в спинном мозге, а узлы вблизи него. При ее воз­буждении учащаются и усиливаются сердечные сокращения, происходит пере­распределение крови от внутренних органов к мышцам, снижении железистой двигательной функции желудка и кишечника.

Парасимпатическая система. Ее ядра находятся в продолговатом, сред­нем мозге и частично в спинном мозге, а функция - противоположна симпати­ческой - система «отбоя» - способствует протеканию восстановительных про­цессов в организме. Строение и функция гуморальной регуляторной системы организма человека.

Гуморальную регуляцию осуществляют железы внутренней и смешан­ной секреции.

1. Железы внутренней секреции (эндокринные железы) не имеют выводных протоков и выделяют свои секреты непосредственно в кровь.

2. Железы смешанной секреции - одновременно осуществляют и внеш­нюю и внутреннюю секрецию (поджелудочная железа, половые железы) - вы­деляют секреты в кровь и в полость органов.

Эндокринные железы выделяют гормоны. Всем им свойственна высокая интенсивность оказываемого воздействия, его дистантность - оказания дейст­вия на расстоянии от места продукции; высокая специфичность действия, а также идентичность действий гормонов у животных и человека. Гормоны ока­зывают свое влияние на организм различными путями: через нервную систему, гуморальную систему и непосредственно воздействуя на рабочие органы и фи­зиологические процессы.

Эндокринноактивных желез большое количество: гипоталамус, гипофиз, эпифиз, тимус, половые железы, надпочечники, щитовидная железа, паращито-видная железа, плацента, поджелудочная железа. Разберем функции некоторых из них.

Гипоталамус - участвует в регуляции вводно-солевого обмена, через син­тез антиудиритеческого гормона; в недержании гомоэтермии; контроле эмоций и поведения, деятельность органов размножения; обуславливает лактацию.

При гипофункции развивается несахарный диабет вследствие очень силь­ного и обильного диуреза. При гиперфункции появляются отеки, артериальная гиперемия, нарушается сон.

Гипофиз находится в головном мозге, он продуцирует гормон роста, а та­кже деятельность других желез. Выработка лактогенного гормона и гормона, регулирующего пигментацию кожи и волос. Гормоны гипофиза включают окисление липидов . При гипофункции в детском возрасте развивается карлико­вость (нанизм). При гиперфункции в детском возрасте развивается гигантизм, а во взрослом акромегалия.

Щитовидная железа выделяет йодозавимый гормон тироксин. При ги­пофункции в детском возрасте развивается кретинизм - задержка роста, психи­ческого и полового развития. Во взрослом возрасте - териоидный зоб, снижа­ются интеллектуальные возможности, повышается содержание холестерина в крови, нарушается менструальный цикл, часто происходит невынашивание бе­ременности (преждевременные роды и выкидыши). При гипертериозе развива­ется базедова болезнь.

Поджелудочная железа - выделяет два противоположных по действию гормона, регулирующих обмен углеводов - глюкогон, отвечает за распад гли­когена до глюкозы, а инсулин - за синтез из глюкозы гликогена. При дефиците

глюкогона и избытке инсулина развивается тяжелейшая гипогликемическая кома. При избытке глюкогона и дефиците инсулина - сахарный диабет.