Основные концепции самоорганизации Г. Хакена. Синергетика по хакену, основные представления синергетики Отсутствие стандарта терминов

И возглавляет Центр синергетики в этом институте, а также ведет исследования в Центре по изучению сложных систем в университете Флориды (Бока Рэтон, США). Основатель и редактор шпрингеровской серии по синергетике

Труды

  • Хакен Г. Синергетика. - М .: Мир, 1980. - 406 с.
  • Хакен Х. Квантополевая теория твёрдого тела . - М .: Наука, 1980. - 344 с.
  • Хакен Г. Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. - М .: Мир, 1985. - 424 с.
  • Хакен Г. Лазерная светодинамика. - М .: Мир, 1988. - 350 с.
  • Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным явлениям. - М .: Мир, 1991. - 240 с.
  • Хакен Г. Принципы работы головного мозга: Синергетический подход к активности мозга, поведению и когнитивной деятельности. - М .: Per Se, 2001. - 353 с.
  • Хакен Г. Тайны восприятия. Синергетика как ключ к мозгу. - Ижевск: ИКИ, 2002. - 272 с.
  • Хакен Г. Тайны природы. Синергетика: учение о взаимодействии. - Ижевск: ИКИ, 2003. - 320 с.

Примечания

Ссылки

  • Синергетическая картина мира по Герману Хакену (интервью)

Категории:

  • Персоналии по алфавиту
  • Физики Германии
  • Синергетика
  • Родившиеся 12 июля
  • Родившиеся в 1927 году
  • Награждённые медалью имени Макса Планка
  • Члены Академии наук ГДР

Wikimedia Foundation . 2010 .

  • Toyota Carina E
  • Соединение (астрономия)

Смотреть что такое "Хакен, Герман" в других словарях:

    Хакен Герман - (Hermann Haken, род. 12 июля 1927 г.) немецкий физик теоретик, основатель синергетики. Изучал физику и математику в университетах Галле (1946 1948) и Эрлангена (1948 1950), получив степени доктора философии и доктора естественных наук. С 1960 г.… … Википедия

    ХАКЕН ГЕРМАН - (pод. в 1927) – немецкий физик теоретик и математик,основатель синергетики, доктор философии и доктор естественных наук, профессор теоретической физики университета Штутгарта и основатель Центра синергетики. Основные работы: «Синергетика» (1980) … Философия науки и техники: тематический словарь

    Хакен - Хакен, Герман Хакен Герман (Hermann Haken, род. 12 июля 1927 г.) немецкий физик теоретик, основатель синергетики. Изучал физику и математику в университетах Галле (1946 1948) и Эрлангена (1948 1950), получив степени доктора философии и доктора… … Википедия

    ХАКЕН - (Haken) Герман (p. 1927) нем. физик теоретик, основатель синергетики. Изучал физику и математику в ун тах Галле (1946 1948) и Эрлангена (1948 1950), получив степени доктора философии и доктора естественных наук. С 1960 является проф.… … Философская энциклопедия

    Герман Хакен - … Википедия

    Синергетика - У этого термина существуют и другие значения, см. Синергетика (значения). Синергетика (от греч. συν приставка со значением совместности и греч. ἔργον «деятельность») междисциплинарное направление науки, изучающее общие… … Википедия

    История математики - История науки … Википедия

    Математика Древнего Востока - История науки По тематике Математика Естественные науки … Википедия

    Медаль имени Макса Планка - Max Planck Medaille 1943 Медаль имени Макса Планка присуждается ежегодно, начиная с 1929 года, Немецким физическим обществом за особые … Википедия

    Общая теория систем - (теория систем) научная и методологическая концепция исследования объектов, представляющих собой системы. Она тесно связана с системным подходом и является конкретизацией его принципов и методов. Первый вариант общей теории систем был… … Википедия

Книги

  • Принципы работы головного мозга. Синергетический подход к активности мозга, поведению и когнитивной деятельности , Герман Хакен. Герман Хакен - выдающийся немецкий ученый, хорошо известный в России как один из родоначальников термина `синергетика` и синергетического подхода к науке и междисциплинарным исследованиям.… Купить за 1146 грн (только Украина)
  • Синергетика. Принципы и основы. Перспективы и приложения. Перспективы и приложения. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. Часть 2. Выпуск 72 , Герман Хакен. Монография Г. Хакена, профессора Штутгартского университета (ФРГ), знакомит читателя с идеями, понятиями и методами синергетики --- общим подходом к изучению универсальных свойств явлений…

До ноября 1997 г. был директором Института теоретической физики и синергетики . С декабря 1997 г. является почетным профессором и возглавляет Центр синергетики в этом институте, а также ведет исследования в Центре по изучению сложных систем в университе Флориды (Бока Рэтон, США). Он является издателем шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени опубликовано уже 69 тт.

Труды

  • Хакен Г. Синергетика. Пер с англ. М.: Мир, 1980. - 406 с.
  • Хакен Г. Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. Пер. с англ. М.: Мир, 1985. - 424 с.
  • Хакен Г. Лазерная светодинамика. Пер. с англ. М.: Мир, 1988. - 350 с. ISBN: 5-03-000937-X
  • Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным явлениям. Пер с англ. М.: Мир, 1991. - 240 с. ISBN 5-03-001913-8 (2-ое изд. М.: КомКнига, 2005. - 248 с.)
  • Хакен Г. Принципы работы головного мозга: Синергетический подход к активности мозга, поведению и когнитивной деятельности. М.: Изд-во Per Se, 2001. - 353 с.
  • Хакен Х. Квантополевая теория твёрдого тела. Пер. с нем. М.: Наука, 1980. - 344 с.
  • Хакен Г. Тайны природы. Синергетика: учение о взаимодействии. Пер с нем. Москва, Ижевск: РХД, 2003.

Wikimedia Foundation . 2010 .

Смотреть что такое "Хакен" в других словарях:

    - (Haken) Герман (p. 1927) нем. физик теоретик, основатель синергетики. Изучал физику и математику в ун тах Галле (1946 1948) и Эрлангена (1948 1950), получив степени доктора философии и доктора естественных наук. С 1960 является проф.… … Философская энциклопедия

    Хакен - (от нем. Hakenkreuz) свастика; … Краткий словарь российского исторического реконструктора

    Хакен Герман (Hermann Haken, род. 12 июля 1927 г.) немецкий физик теоретик, основатель синергетики. Изучал физику и математику в университетах Галле (1946 1948) и Эрлангена (1948 1950), получив степени доктора философии и доктора естественных… … Википедия

    - (Hermann Haken, род. 12 июля 1927 г.) немецкий физик теоретик, основатель синергетики. Изучал физику и математику в университетах Галле (1946 1948) и Эрлангена (1948 1950), получив степени доктора философии и доктора естественных наук. С 1960 г.… … Википедия

    ХАКЕН ГЕРМАН - (pод. в 1927) – немецкий физик теоретик и математик,основатель синергетики, доктор философии и доктор естественных наук, профессор теоретической физики университета Штутгарта и основатель Центра синергетики. Основные работы: «Синергетика» (1980) … Философия науки и техники: тематический словарь

    - … Википедия

    У этого термина существуют и другие значения, см. Синергетика (значения). Синергетика (от греч. συν приставка со значением совместности и греч. ἔργον «деятельность») междисциплинарное направление науки, изучающее общие… … Википедия

    В самом широком смысле И. и. это абстрактная теория челов., животного и машинного познания. Конечная цель ее развития создание единой теория познания. Как теорет. психология. И. и. представляет собой продолжение исследовательской программы,… … Психологическая энциклопедия

    - (совместная деятельность) наука о процессах самоорганизации в природе и об ве. Предметом С. являются механизмы спонтанного образования и сохранения сложных систем, особенно находящихся в отношении устойчивого неравновесия со… … Энциклопедия культурологии

    Самопроизвольное (не требующее внеш. организующих воздействий) образование упорядоченных пространственных или временных структур в сильно неравновесных открытых системах (физ., хим., биол. и др.). Непрерывные потоки энергии или в ва, поступающие… … Химическая энциклопедия

Книги

  • Синергетика. Принципы и основы. Перспективы и приложения. Принципы и основы. Неравновесные фазовые переходы и самоорганизация в физике, химии и биологии. Часть 1. Выпуск № 71 , Хакен Г.. Монография Г. Хакена, профессора Штутгартского университета (ФРГ), посвящена синергетике - новой дисциплине, возникшей на стыке нескольких наук (физики, химии, биологии, социологии и т. д.).…
  • Принципы работы головного мозга. Синергетический подход к активности мозга, поведению и когнитивной деятельности , Хакен Г.. Герман Хакен - выдающийся немецкий ученый, хорошо известный в России как один из родоначальников термина "синергетика" и синергетического подхода к науке и междисциплинарным исследованиям.…
Философия Науки. Хрестоматия Коллектив авторов

ГЕРМАН ХАКЕН. (Род. 1927)

ГЕРМАН ХАКЕН. (Род. 1927)

Г. Хакен (Haken) - известный немецкий ученый, один из основателей синергетики. Термин «синергетика» был им введен в 1969 году для обозначения научного подхода, исследующего процессы самоорганизации в физических, химических и биологических системах. Ныне под синергетикой понимают мощное направление междисциплинарных научных исследований, в рамках которого изучаются процессы перехода от хаоса к порядку в открытых нелинейных системах. Начав свою научную деятельность как физик-лазерщик, Хакен принципиально расширил круг своих исследований природы самоорганизации (как последовательности фазовых переходов при соответствующем действии управляющих параметров) от физики лазеров до нейросинергетики и социосинергетики. В целом синергетика, по Хакену, исследует процессы эволюции сложных систем как их самоорганизацию. В кратком виде ее часто называют концепцией (теорией) самоорганизации, а более широко - теорией нелинейных процессов. Подобный подход настолько адекватно характеризует главные особенности современной науки, называемой постнекласссической, что многие актуальные проблемы науки раскрываются сквозь призму синергетической парадигмы. Взгляды Хакена представлены ниже на основе одной из последних опубликованных им книг, которая служит прекрасным примером реализации синергетического подхода к изучению естественно-научных и философских проблем общества и человека на основе таких сложных процессов, как функционирование головного мозга, поведения и реализации познавательных возможностей человека.

На русском языке опубликованы следующие работы Хакена: Синергетика. М., 1980; Синергетика. Иерархии неустойчивостей в самоорганизующихся системах и устройствах. М., 1985; Информация и самоорганизация. М., 1991; Принципы работы головного мозга. М, 2001.

В.Н. Князев

Приведенные фрагменты текста взяты из книги:

Хакен Г. Принципы работы головного мозга. М., 2001.

Нашу книгу можно рассматривать как попытку построить последовательную теорию активности мозга на макроскопическом уровне. Мы рассматриваем мозг как гигантскую сложную систему, которая подчиняется законам синергетики, т.е. функционирует вблизи точек потери устойчивости, где макроскопические паттерны определяются параметрами порядка.

Принцип подчинения наводит мост между макроскопическим и микроскопическим уровнями. В прошлом из-за сложности функционирования мозга в области теории мозга доминировали его словесные описания. В настоящее время ситуация быстро изменяется из-за двух основных направлений исследований. Одно из них, которое можно было бы назвать коннекционизмом, восходит корнями к модели Мак-Каллоха-Питтса, о которой мы кратко упоминали в гл.18. Другим направлением можно считать последовательную реализацию математического моделирования головного мозга на основе идей синергетики. Эта программа в общих чертах изложена в нашей книге. Сказанное отнюдь не означает, будто не существует других подходов, но, насколько можно судить, другие подходы уступают по широте синергетическому. Очень часто словесные описания кажутся более гибкими из-за неоднозначности, присущей самой природе языка. В отличие от вербальных математические подходы операциональны, т.е. допускают строгую проверку сделанных утверждений. По-видимому, наиболее адекватный подход должен был бы лежать где-то посредине, т.е. не должен был бы быть столь жестким, как существующие ныне математические подходы, и должен был бы носить более количественный характер, чем обычные словесные описания. (С. 307)

Дух и материя - вечный вопрос

Изложенные нами подходы наглядно демонстрирует всю важность одной существенной идеи синергетики, а именно идеи самоорганизации системы, косвенно управляемой приданием подходящих значений управляющим параметрам. Придание управляющим параметрам определенных значений - задача отнюдь не тривиальная. Всякий раз, когда возникает необходимость в фиксации управляющих параметров в уравнениях модели, будь то уравнения, описывающие постукивание пальцами, или анализа МЭГ, решения чувствительно зависят от значений параметров. В этой связи возникает очень глубокая проблема, а именно вопрос: кто придает соответствующие значения управляющим параметрам в мозгу? Верна ли идея Экклса, согласно которой мозг представляет собой вычислительную машину, или компьютер, а его программа, или - в терминах самоорганизации - значения его управляющих параметров, определяются разумом? Я глубоко убежден, что управляющие параметры задаются мозгом через другие процессы самоорганизации на ином уровне, нежели уровень уравнений, определяющих, например, те или иные движения. Имеется ряд указаний относительно того, каким образом может быть достигнуто придание параметрам подходящих значений: один из возможных путей - обучение, т.е. изменение синаптических сил. Косвенным указанием на придание соответствующих значений управляющим параметрам служат так называемые Bereiftschatspotentiale (потенциалы готовности), открытые Корнхубером и Дикке (1965). В соответствующих экспериментах испытуемого просят, например, поднять указательный палец всякий раз, когда ему того захочется.

В какой-то момент времени палец поднимается. Но (в этом и состоит решающее открытие), как показывает ЭЭГ, примерно за 60 миллисекунд в мозгу возникают специфические электрические потенциалы. Мозг как бы заранее готовится к предстоящему действию. По моему мнению, возникновение Bereiftschatspotentiale является еще одним актом самоорганизации, предшествующим другим актам самоорганизации, который приводит к установлению соответствующих значений управляющих параметров. Возникает очевидная трудность: что «запускает» самоорганизацию Bereiftschaftspotentiale? Я полагаю, что происходит трансформация микроскопических явлений в макроскопические проявления в форме электрических потенциалов. По моему убеждению, все действия мозга, которые ныне считаются нематериальными, в действительности связаны с материальными процессами. Например, команда (передаваемая по материальным путям) материально хранится в нейронах (или синапсах и т.п.), а затем (может быть, спонтанно) активируется (возможно, флуктуацией). Экспериментальное доказательство моей гипотезы затруднительно, по крайней мере в настоящее время, поскольку о материальной основе памяти известно слишком мало.

Я отнюдь не утверждаю, что все свойства разума являются всего лишь результатом материальной активности мозга. Моя точка зрения основывается на концепции параметров порядка и принципа подчинения, включая принцип круговой причинности. Иначе говоря, моя интерпретация состоит в том, что абстрактные процессы управляются параметрами порядка (и их изменениями) и что материальные процессы, описываемые отдельными переменными системы, обуславливают друг друга. Возможно, не так уже плохо, что эти утверждения непроверяемы или носят «философский» характер. Причина заключается в том, что мозг необычайно сложен и возникновение новых качеств может происходить на множестве различных уровней от микроскопического до макроскопического, и поэтому установить все корреляции, необходимые для доказательства того, что новое качество действительно возникло, может быть очень трудно.

В нашей книге мы не раз по различным поводам отмечали, что наличие параметров порядка и действие принципа подчинения влекут за собой колоссальное сжатие информации. Характерные сложные микроскопические конфигурации управляются одним или несколькими параметрами порядка. Ярким примером того, как действует сжатие информации, служит сам язык. Какое-нибудь простое слово, например, «собака», включает в себя неисчерпаемое разнообразие пород, окраса, форм, осанок и т.п. Коммуникация стала возможной лишь благодаря сжатию информации в указанном выше и других смыслах. Вместе с тем сжатие информации порождает неоднозначности, и эффективность языка заключается в балансе между однозначностью и неоднозначностью.

Интересно отметить, что сжатие информации можно обнаружить и в управлении двигательной активностью. Как было показано нами в эксперименте с педало, это движение в конечном счете после обучения управляется одним комплексным параметром порядка, удовлетворяющим весьма универсальному уравнению для параметра порядка, а именно осцилляторному уравнению Ван дер Поля. С другой стороны, отдельные параметры порядка необходимо сделать эффективными путем трансляции на многие степени свободы, например, на мышечные клетки. Этот процесс можно рассматривать как инфляцию информации. Таким образом, принцип подчинения имеет в определенном смысле два аспекта: с одной стороны, принцип подчинения служит сжатию информации, с другой - порождает инфляцию информации.

Еще один аспект заслуживает обсуждения: природа параметров порядка. За редким исключением параметры порядка нематериальны, например, параметром порядка может быть фазовый угол, как в примере с движением пальца. Это немедленно приводит нас к проблеме «дух-материя» или «разум-тело»: как такая нематериальная величина, как параметр порядка, может управлять поведением материальной системы, например, мышц? С чисто математической точки зрения никакая проблема, разумеется, не существует: фазовый угол и сокращение мышечных клеток могут быть описаны математическими переменными и их уравнениями движения. Как показано в синергетике, отдельные части системы с их переменными q приводят к возникновению параметров порядка?, которые в свою очередь через принцип подчинения управляют поведением частей системы. Математически это выражается так:

т.е. q становится функцией параметров порядка? .

Но в физике и еще в большей мере в философии мы хотим интерпретировать соотношения, или, иначе говоря, придать им смысл.

Например, закон Ньютона

ma=F (2)

т.е. произведение массы частицы на ее ускорение а равно действующей на частицу силе F, интерпретируют, утверждая: «сила F есть причта ускорения частицы». Что можно было бы считать интерпретацией соотношения (1)? Утверждение о том, что q представляет переменные материальных составляющих системы, например, мышечных клеток, тогда как параметр порядка ? представляет нематериальную величину (разум?). По аналогии между (1) и (2) можно было бы сказать: «Дух определяет поведение материи».

С другой стороны, как упоминалось выше, q порождает ?, или, если прибегнуть к интерпретации, «материя определяет дух». (Знаменитая книга Дельбрюка так и называется: «Дух из материи») Наконец, нельзя не упомянуть о круговой причинности: дух и материя взаимно обуславливают друг друга, или, иначе говоря, дух и материя - две стороны одной и той же медали. Такова моя точка зрения, но она не нова. Как я узнал от Атлана, этой точки зрения придерживался Спиноза. Боюсь, что по проблеме духа и материи могут быть высказаны и дискутироваться совершенно различные точки зрения. По моему мнению, в данном случае трудность начинается, когда мы переходим от математики к онтологии мозга и разума.

Каков бы ни был исход таких диспутов и обсуждений, я все же склоняюсь к понятию параметра порядка и принципу подчинения, по крайней мере как метафора проблемы разум-тело, а может быть и более широкой проблемы.

Некоторые открытые проблемы

В науке хорошо известно, что решение одной проблемы часто порождает дюжину новых вопросов. Разумеется, это применимо и к подходу, изложенному в нашей книге. Мозг - необычайно сложная система, и, как я упомянул в начале, эта система многогранна. Существуют многочисленные вопросы, которые не получили ответов в нашей книге или ответы на которые вообще не известны. Назову лишь некоторые из них. Один из таких вопросов: где локализована память? Локализована ли память в синапсах или, более конкретно, в рецепторах? Может быть, как подозревают некоторые ученые, например, Хамероф (1987). Проблема, которую я совсем не обсуждаю, - рост и развитие мозга. Эта проблема носит весьма фундаментальный характер, так как структура и функция взаимно обуславливают друг друга. Затронутая нами тема столь обширна, что заслуживает особой книги.

Еще одна проблема, которую я умышленно обошел молчанием, - сознание. Как заметил в своей последней книге Фриман (1995), эта проблема возникала снова и снова по крайней мере через каждые пятьдесят лет. По своему собственному опыту я знаю, что чем ближе область собственных исследований ученого к исследованию мозга, тем реже этот ученый говорит о проблеме сознания. Такою общее положение дел. Разумеется, не обходится и без исключений. Тем не менее создается впечатление, что все, кто так или иначе связан с исследованием активности мозга, весьма неохотно обсуждают проблему сознания. В качестве выдающихся контрпримеров можно назвать Крика и Коха (1990), а также Эдельмана (1992). Все они предложили различные научные подходы к проблеме сознания, но лично я предпочитаю оставить ее без обсуждения. То же относится и к таким свойствам, как восприятие цвета или ощущение боли. По моему мнению, эти свойства не поддаются (по крайней мере в настоящее время) математическому моделированию в указанных выше направлениях.

Какою же будущее изложенного мной подхода? Ясно, что мы можем предпринять попытки построить более сложные математические модели в рамках синергетики и подвергнуть анализу более сложные движения или типы поведения. Обширная область моделирования, которая еще только начинает развиваться, - это создание теории связанных нелинейных осцилляторов, которая позволила бы описать специфические эксперименты по зрительному восприятию, о чем говорилось в гл. 2 (см., например, Тасе и Хакен (1995)).

В качестве заключения упомяну несколько общих проблем.

1) Наш мозг - вычислительная машина? При обсуждении этой проблемы необходимо иметь в виду, что за прошедшие века понятие машины претерпело значительные изменения. Первоначально под машиной понимали простое устройство, например, рычаг или молот, для выполнения механической работы. В наши дни мы говорим о компьютере как о машине. Кроме того, в настоящее время к машинам применяют ряд понятий, заимствованных из биологии. В контексте конструирования машин мы встречаем такие понятия, как самоорганизация, самовосстановление, самосборка, самоуправление и т.д. Обратите внимание, как широко «самость» вторглась в мир машин! Поэтому когда речь заходит о сравнении мозга с машиной, необходимо тщательно оговаривать, какого рода машина имеется в виду. Мозг заведомо не является машиной в первоначальном смысле слова, а именно - созданным человеком устройством для выполнения определенных задач. Но по мере того как мы наделяем машину все новыми и новыми биологическими аспектами, различие между мозгом и машиной стирается все больше. Ситуация выглядит так, как если бы между человеческим мозгом и человеческим мозгом (это не опечатка!) шла некая престижная гонка. С одной стороны, человеческий мозг стремится построить машину, возможности которой были бы равны возможностям мозга, а с другой стороны, человеческий мозг стремится доказать свое превосходство перед машиной. (Нечто подобное мы обнаруживаем в сравнении человеческого мозга с компьютером. Эту ситуацию мы обсудили в гл. 18, и поэтому не будем повторяться.)

2) Мозг и чипы, или протезы мозга. Интересная задача - установление физической связи между нейронами и чипами. Решением ее занимается, например, Фромхерц (1994). Мы находимся здесь в самом начале пути, и делать сколько-нибудь определенные прогнозы относительно будущего развития, например, относительно чипов, имплантированных в поврежденный мозг или увеличения информационной емкости мозга (протезы мозга). Только будущее покажет, имеем ли мы дело с научной фантастикой или реальностью. Но с абстрактной точки зрения синергетики кооперативные эффекты могут приводить к такому же макроскопическому поведению систем с совершенно различными микроскопическими компонентами. Существенны лишь параметры порядка.

3) Креативность. Наконец, было бы уместно сказать несколько слов о креативности. До сих пор я полностью обходил молчанием эту проблему. В действительности креативность представляется мне самой глубокой из всех головоломок, связанных с мозгом. Под креативностью имеется в виду рождение идей, которые не рождались никогда прежде и более того - рождение которых в высшей степени маловероятно. Рождение новой идеи можно уподобить головоломке, при решении которой после многих безуспешных попыток из кусочков причудливой формы внезапно складывается картинка. Акт творения сравнительно легко охарактеризовать на словесном уровне, например, как конкуренцию и кооперацию различных идей в форме параметров порядка. По поводу такого рода определений трудно удержаться от критических замечаний: высказывать подобные сентенции - пустое дело, они не дают нам никакого операционального подхода и не дают рецепта, который позволял бы решить головоломку или найти новую фундаментальную идею. Может быть, хорошо, что природа гения все еще окутана тайной. (С.309-314)

Из книги 100 великих вокалистов автора Самин Дмитрий

ЛЕОНТИНА ПРАЙС (1927) На вопрос, может ли цвет кожи мешать карьере оперного исполнителя, Леонтина Прайс отвечала так: «Что касается почитателей - им он не мешает. Но мне как певице - безусловно. На „благодатной“ граммофонной пластинке я могу записывать все, что угодно. Но,

Из книги 100 великих врачей автора Шойфет Михаил Семёнович

Бехтерев (1857–1927) Владимир Михайлович Бехтерев - выдающийся русский психиатр, один из основателей русской экспериментальной психологии, обладал выдающимися способностями и исключительным трудолюбием.Будущий великий врач родился 20 января 1857 года в семье мелкого

Из книги Большая Советская Энциклопедия (ГУ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЖЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (НА) автора БСЭ

Из книги Большая Советская Энциклопедия (ТИ) автора БСЭ

Из книги Пистолеты и револьверы [Выбор, конструкция, эксплуатация автора Пилюгин Владимир Ильич

Astra 900 (Испания, 1927) Испанские производители, воспользовавшись тем, что после окончания Первой мировой войны по условиям Версальского договора фирма «Маузер» была вынуждена сократить производство, поспешили захватить ее традиционные рынки сбыта – Китай и Южную Америку и

Из книги Историческое описание одежды и вооружения российских войск. Том 14 автора Висковатов Александр Васильевич

Кольт Detective Spl. 1927 Основные тактико-технические характеристики: Рис. 82. Кольт Detective Spl. 1927Еще один образец оружия-долгожителя! Это оружие модели 1927 года является логичным развитием Police Positive Spl со стандартным стволом длиной 2 дюйма. У нее такой же удлиненный барабан, а все

Из книги ХХ век Энциклопедия изобретений автора Рылёв Юрий Иосифович

Из книги Артиллерия и минометы XX века автора Исмагилов Р. С.

1927 АВТОМОБИЛЬ С ПРИВОДОМ НА ПЕРЕДНИЕ КОЛЕСА, запатентовал во Франции инженер Альберт Бучиалли.АППРЕТИРОВАНИЕ, применили при обработке хлопка (позже и других тканей).ВИДЕОТЕЛЕФОННАЯ СВЯЗЬ ПО СИСТЕМЕ С ОПТИКО-МЕХАНИЧЕСКОЙ РАЗВЕРТКОЙ ИЗОБРАЖЕНИЯ, линия, построил

Из книги Старинные автомобили 1885-1940 Малая энциклопедия автора Поразик Юрай

Из книги автора

МИНЕРВА 1927 Изготовитель: Минерва Моторе, Антверпен Мортсел, Бельгия.В 1900 году в Бельгии существовало много фирм: «Германия», «FN», «Металлургика», «Минерва», «Наже», «Тайп» и «Вивинус», производящих легковые автомобили. Наиболее известная из них - «Минерва» - начинала с

Из книги автора

ФРАНКЛИН 1927 Изготовитель: Франклин Аутомобиле Ко, Сиракузы, Нью-Йорк, СШАВ городе Сиракузы, в американском штате Нью-Йорк, Гбрберт Франклин основал в 1901 году фирму «Франклин». Джон Уилкинсон, конструктор удачных автомобилей этой марки, использовал в своих моделях только

Из книги автора

ШЕВРОЛЕ «КАПИТОЛЬ» 1927 Изготовитель: Шевроле Мотор Ко, Детройт, Мичиган, СШАЛуи Шевроле, известный гонщик спортивных автомобилей марки «Бьюик» решил построить завод и выпускать автомобили собственной конструкции. Таким образом в Детройте, штат Мичиган, появилось

Из книги автора

ВОЛЬВО OV4 1927 Изготовитель: АВ Вольво Кар Дивижю, Гетеборг, ШвецияУ истоков производства автомобилей в фирме «Вольво» стояли двое молодых людей: торговец Ассар Габриельссон и конструктор Густав Ларсон. В 1927 году, когда Генри Форд прекратил производство своей успешной

Из книги автора

ФОРД А 1927 Производитель: Форд Мотор Ко… Дипборн. Мичиган, СШАВесной 1927 года весь автомобильный мир удивило сообщение, что Форд остановил производство автомобилей на всех своих заводах. Генри Форд хотел создать автомобиль, который никогда не старился бы и который с

1. Синергетика по Хакену 3

2. Начала синергетики 4

3. Отсутствие стандарта терминов 5

4. Междисциплинарность синергетики 7

5. Синергетика относительно динамических систем 9

6. Самоорганизация в синергетике 12

7. Критика синергетики и синергетиков 13

8. Синергетическая концепция самоорганизации 14

Заключение 17

Литература 20

Введение

В последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название «синергетика». Издаются солидные монографии, учебники, выходят сотни статей, проводятся национальные и международные конференции. Трудно или даже невозможно назвать область знания, в которой сегодня не проводились бы исследования под рубрикой синергетики. Для публикаций на тему синергетики характерно то, что в них нередко приводятся авторские трактовки принципов синергетики, причем трактовки довольно разнородные и не всегда достаточно аргументированные. Причиной этого является отсутствие достаточной определенности относительно основоположений синергетики и возникающей отсюда необходимости уточнения статуса излагаемого материала.

Цель данной работы – попытаться на доступном уровне раскрыть существо и понятие синергетики, как нового направления современной научной мысли. Данная работа, в сущности, результат совмещения многих источников, результат поиска некоей золотой середины в описании синергетики как перспективного направления современной научной мысли.

1. Синергетика по Хакену

Создателем синергетического направления и изобретателем термина "синергетика" является профессор Штутгартского университета и директор Института теоретической физики и синергетики Герман Хакен. Сам термин «синергетика» происходит от греческого «синергена» - содействие, сотрудничество, «вместедействие».

По Хакену, синергетика занимается изучением систем, состоящих из большого (очень большого, «огромного») числа частей, компонент или подсистем, одним словом, деталей, сложным образом взаимодействующих между собой. Слово «синергетика» и означает «совместное действие», подчеркивая согласованность функционирования частей, отражающуюся в поведении системы как целого. Очевидно, что методологии разных областей знания столь различны, что их общность может быть реализована лишь на концептуальном уровне. Подтверждением того, что замысел Г. Хакена был в определенной мере неопределенен и субъективен, являются свидетельства некоторых ученых, в беседах с которыми Г. Хакен говорил, что называние предложенного им научного направления «синергетикой» случайно и непринципиально. Трудно, однако, согласиться с мнением, что название непринципиально, и с полаганием, что синергетику можно было бы с неменьшим успехом назвать Х–наукой. В конечном счете начинание Г. Хакена оказалось плодотворным именно благодаря естественно понимаемой ассоциации синергетики с самоорганизацией.

2. Начала синергетики

Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями (согласованное действие сгибательных и разгибательных мышц - протагониста и антигониста).

С. Улам был непосредственным участником одного из первых численных экспериментов на ЭВМ первого поколения (ЭНИВАКе) и понял всю важность и пользу «синергии, т. е. непрерывного сотрудничества между машиной и ее оператором», осуществляемого в современных машинах за счет вывода информации на дисплей.

И. Забуский к середине 60-х годов, реалистически оценивая ограниченные возможности как аналитического, так и численного подхода к решению нелинейных задач, пришел к выводу о необходимости единого синтетического подхода. По его словам, «синергетический подход к нелинейным математическим и физическим задачам можно определить как совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений».

Все вышеприведенные начала обьеденяет тот факт, что во всех случаях речь идет о согласованности действий.

3. Отсутствие стандарта терминов

Синергетика, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы, еще далека от завершения и единой общепринятой терминологии (в том числе и единого названия всей теории) пока не существует. Ряд авторитетных авторов высказывается о синергетике как о новой научной парадигме. Например в работе говорится: «Предельно краткая характеристика синергетики как новой научной парадигмы включает в себя три основные идеи: нелинейность, открытость, диссипативность». Более общей является следующая трактовка: «Синергетика является теорией эволюции и самоорганизации сложных систем мира, выступая в качестве современной (постдарвиновской) парадигмы эволюции».

Заслуживающим внимания представляется следующее определение:
«Синергетика - (от греч. synergetikos - совместный, согласованный, действующий), научное направление, изучающее связи между элементами структуры (подсистемами), которые образуются в открытых системах (биологических, физико–химических и других) благодаря интенсивному (потоковому) обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень ее упорядоченности, т. е. уменьшается энтропия (самоорганизация). Основа синергетики - термодинамика неравновесных процессов, теория случайных процессов, теория нелинейных колебаний и волн».

Бурные темпы развития новой области, не оставляют времени на унификацию понятий и приведение в стройную систему всей суммы накопленных фактов. Исследования в новой области ввиду ее специфики ведутся силами и средствами многих современных наук, каждая из которых обладает свойственными ей методами и сложившейся терминологией. Параллелизм и разнобой в терминологии и системах основных понятий в значительной мере обусловлены также различием в подходе и взглядах отдельных научных школ и направлений и в акцентировании ими различных аспектов сложного и многообразного процесса самоорганизации. Отсутствие в синергетике единого общепринятого научного языка глубоко символично для науки, занимающейся явлениями развития и качественного преобразования.

Строгое определение синергетики требует уточнения того, что следует считать большим числом частей и какие взаимодействия подпадают под категорию сложных. Считается, что сейчас строгое определение, даже если бы оно было возможным, оказалось бы явно преждевременным. Поэтому далее (как и в работах самого Хакена и его последователей) речь пойдет лишь об описании того, что включает в себя понятие "синергетика", и её отличительных особенностей.

4. Междисциплинарность синергетики

Системы, составляющие предмет изучения синергетики, могут быть самой различной природы и содержательно и специально изучаться различными науками, например, физикой, химией, биологией, математикой, нейрофизиологией, экономикой, социологией, лингвистикой (перечень наук легко можно было бы продолжить). Каждая из наук изучает "свои" системы своими, только ей присущими, методами и формулирует результаты на "своем" языке. При существующей далеко зашедшей дифференциации науки это приводит к тому, что достижения одной науки зачастую становятся недоступными вниманию и тем более пониманию представителей других наук.

В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции (развития во времени) систем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели. Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки и переносить результаты одной науки на, казалось бы, чужеродную почву.

Следует особо подчеркнуть, что синергетика отнюдь не является одной из пограничных наук типа физической химии или математической биологии, возникающих на стыке двух наук (наука, в чью предметную область происходит вторжение, в названии пограничной науки представлена существительным; наука, чьими средствами производится "вторжение", представлена прилагательным; например, математическая биология занимается изучением традиционных объектов биологии математическими методами). По замыслу своего создателя профессора Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучаюшей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий ("интернациональный") характер по отношению к частным наукам. Физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики.

Как и всякое научное направление, родившееся во второй половине ХХ века, синергетика возникла не на пустом месте. Ее можно рассматривать как преемницу и продолжательницу многих разделов точного естествознания, в первую очередь (но не только) теории колебаний и качественной теории дифференциальных уравнений. Именно теория колебаний с ее "интернациональным языком", а впоследствии и "нелинейным мышлением" (Л.И. Мандельштам) стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата.

Немецкий физик-теоретик, один из основателей синергетики, правнучатый племянник Карла Маркса .

Термин «синергетика» был использован Германом Хакеном в курсе его лекций, прочитанных в 1969 году в университете г. Штутгарта, хотя. «…впервые этот термин был употреблён английским физиологом Ч.С. Шеррингтоном (1857-1952) около ста лет тому назад. Слово «синергетика» происходит от греческого «synergeia», что означает «совместное, или кооперативное, действие». Такое действие непременно присутствует в процессах самоорганизации. Под синергетикой Хакен предложил понимать область науки, которая занимается изучением эффектов самоорганизации в физических системах, а также родственных им явлений в более широком классе систем. Новый ракурс, предложенный синергетикой для изучения проблем самоусложнения и развития материальных систем, имеет целый ряд несомненных достоинств. Синергетика включила в свою сферу практически все мыслимые объекты и сконцентрировала внимание на изучении конкретных механизмов возникновения и совершенствования организации. Синергетика также обращает внимание на то, что эффекты упорядочения, которые возникают в динамических системах, обязаны своим появлением действию различных нелинейных процессов».

Удумян Н.К., Современные методы изучения молекулярной эволюции, в Сб.: Вызов познанию: стратегии развития науки в современном мире / Отв. ред. Н.К. Удумян М., «Наука», 2004 г., с. 125.

«Особенность синергетики Герман Xакен охарактеризовал следующим образом: «... между поведением совершенно различных систем, изучаемых различными науками, существуют поистине удивительные аналогии, синергетика существует не сама по себе, а связана с другими науками по крайней мере двояко.
Во-первых, изучаемые синергетикой системы относятся к компетенции различных наук.
Во-вторых, другие науки привносят в синергетику свои идеи.
Учёный, пытающийся проникнуть в новую область, естественно, рассматривает её как продолжение своей собственной области науки.
Чтобы убедиться в справедливости последнего замечания, достаточно взглянуть на заглавия докладов, представленных на наши предыдущие конференции. Так, прочитанный мной доклад носит весьма характерное название «Лазер, как источник новых идей в синергетике». Математики, занимающиеся теорией бифуркаций, предпочли озаглавить доклад «Теория бифуркаций и её приложения». Физики, изучающие фазовые переходы, представили доклад под названием «Неравновесные фазовые переходы», а специалисты по статистической механике сочли более уместным назвать тот же подход «Неравновесной нелинейной статистической механикой».
Другие усматривали в новой области дальнейшее развитие «термодинамики необратимых процессов», третьи нашли рассматриваемый круг явлений особенно подходящим для применения теории катастроф (сохранив за не поддающимися пока решению проблемами название «обобщенных катастроф»).
Некоторые математики склонны рассматривать весь круг проблем с точки зрения структурной устойчивости.
Все перечисленные мной разделы науки весьма важны для понимания образования макроскопических структур образования в процессе самоорганизации, но каждый из них упускает из виду нечто одинаково существенное. Укажу лишь некоторые из пробелов. Мир - не лазер. В точках бифуркации решающее значение имеют флуктуации, т. е. стохастические процессы. Неравновесные фазовые переходы обладают некоторыми особенностями, отличными от обычных фазовых переходов, например, чувствительны к конечным размерам образцов, форме границ и т. п. В равновесной статистической механике не существуют самоподдерживающиеся колебания. В равновесной термодинамике широко используются такие понятия, как энтропия, производство энтропии и т. д., неадекватные при рассмотрении неравновесных фазовых переходов.
Теория катастроф основана на использовании некоторых потенциальных функций, не существующих для систем, находящихся в состояниях, далёких от теплового равновесия ».

Культурология: люди и идеи, М., «Академическпй проект», 2006 г., с. 464.

Аналогичные исследования шли в разных странах.

«Единая наука о самоорганизации в Германии была названа синергетикой (Г. Хакен ), во франкоязычных странах - теорией диссипативных структур (И. Пригожин ), в США - теорией динамического хаоса (М. Фейгенбаум ), в Латинской Америке - теорией аутопоэза (У.Р. Матурана ). В отечественной литературе принят преимущественно первый термин, наиболее краткий и ёмкий, а также «нелинейная динамика» (С.П. Курдюмов ). Синергетика - одна из междисциплинарных моделей, которую пронизывает парадигма элевации: эволюционно ранние процессы рассматриваются с учётом эволюционно поздних, прошлое сквозь призму будущего. Это дало повод некоторым авторам противопоставить её кибернетической теории систем, изучающей в основном механизмы стабилизации и отрицательные обратные связи».

Назаретян А.П. , Универсальная перспектива творческого интеллекта в свете постнеклассической методологии, в Сб.: Вызов познанию: стратегии развития науки в современном мире / Отв. ред. Н.К. Удумян М., «Наука», 2004 г., с. 405.

Сам Герман Хакен считает, что «…креативность представляется мне самой глубокой из всех головоломок, связанных с мозгом. Под креативностью имеется в виду рождение идей, которые не рождались никогда прежде и более того - рождение которых в высшей степени маловероятно. Рождение новой идеи можно уподобить головоломке, при решении которой после многих безуспешных попыток из кусочков причудливой формы внезапно складывается картинка. Акт творения сравнительно легко охарактеризовать на словесном уровне, например, как конкуренцию и кооперацию различных идей в форме параметров порядка. По поводу такого рода определений трудно удержаться от критических замечаний: высказывать подобные сентенции - пустое дело, они не дают нам никакого операционального подхода и не дают рецепта, который позволял бы решить головоломку или найти новую фундаментальную идею. Может быть, хорошо, что природа гения всё ещё окутана тайной».

Герман Хакен, Принципы работы головного мозга: Синергетический подход к активности мозга, поведению и когнитивной деятельностиМ., «Пер’cэ», 2001 г., с. 314.